2007 Vol. 9, No. 21 4315–4318

Enantio- and Diastereoselective Synthesis of $syn-\beta$ -Hydroxyallylsilanes via a Chiral (Z)- γ -Silylallylboronate

Ricardo Lira and William R. Roush*

Department of Chemistry, Scripps Florida, Jupiter, Florida 33458 roush@scripps.edu

Received August 2, 2007

ABSTRACT

syn- β -Hydroxyallylsilanes of general structure 11 and 28 are prepared in 50–86% yield and 91–95% ee (for aliphatic aldehydes; 50% ee for benzaldehyde) via the BF₃-Et₂O-promoted γ -silylallylboration reactions, using reagents 14 and 15.

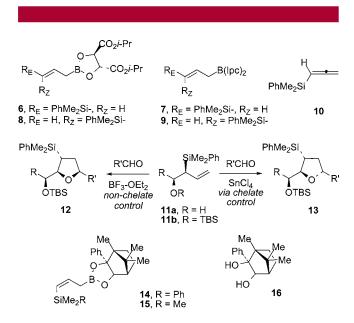
The Lewis acid-promoted [3+2]-annulation reaction of chiral allylsilanes and carbonyl electrophiles is an important method for the synthesis of substituted tetrahydrofurans. 1-7 Previous studies in our laboratory have demonstrated that β -alkoxyallylsilanes 1 undergo highly diastereoselective [3+2]annulation reactions with aldehydes and certain highly activated ketones, with the stereochemical outcome depending on the nature of the Lewis acid-carbonyl electrophile combination (Figure 1). Under nonchelate controlled conditions (BF₃·OEt₂ catalysis), the 2,5-cis-tetrahydrofurans **4** are obtained with ≥ 20.1 selectivity, whereas when a chelating Lewis acid such as SnCl₄ is employed (in concert with a carbonyl electrophile that is capable of supporting a chelate with the Lewis acid), the 2,5-trans-tetrahydrofurans 5 are obtained, also with ≥ 20.1 selectivity.³ We have employed this technology in the total syntheses of asimicin, ⁸ bullaticin, ⁹ and amphidinolide E, 10-12 as well as in approaches to the synthesis of pectenotoxin-2, 13 amphidinolides C and $F,^{14}$ and angelmicin $B.^{15}\,$

Figure 1. [3+2]-Annulation reactions of *anti-\beta*-alkoxyallylsilanes.

⁽¹⁾ Masse, C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293 and references cited therein.

⁽²⁾ Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 3173.

⁽³⁾ Micalizio, G. C.; Roush, W. R. *Org. Lett.* **2000**, *2*, 461.


⁽⁴⁾ Peng, Z.-H.; Woerpel, K. A. Org. Lett. 2000, 2, 1379.

⁽⁵⁾ Peng, Z.-H.; Woerpel, K. A. Org. Lett. **2002**, 4, 2945.

⁽⁶⁾ Peng, Z.-H.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 6018.

⁽⁷⁾ Akiyama, T.; Funaki, S.; Fuchibe, K. Heterocycles 2006, 67, 369.

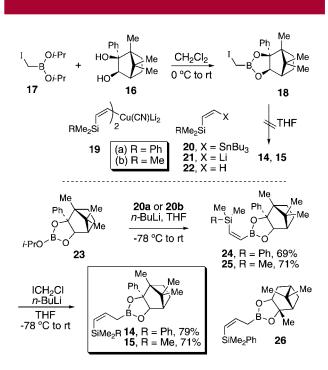

anti- β -Alkoxyallylsilanes 1 are synthesized with 80–92% ee via the asymmetric allylboration reactions of aldehydes with chiral allylboronate **6** or allylboronate **7**. ^{16,17} However, attempts to extend this methodology to the enantioselective synthesis of the syn- β -alkoxyallylsilanes 11, needed for the enantioselective synthesis of substituted tetrahydrofurans 12 and 13, have proven to be unexpectedly challenging. The reactions of aldehydes with the tartrate ester modifed (Z)- γ -silylallylboronate 8 proceed with only 50–60% ee, 9 and attempts to generate 9 via hydroboration of silvlallene 10 with $(Ipc)_2BH$ at low temperature give the $(E)-\gamma$ -silylallylborane 7 with excellent selectivity, presumably via thermodynamically controlled isomerization of the kinetically formed (Z)- γ -silylallylborane. ^{18,19}

Figure 2. (*Z*)- γ -Silylallylborating agents for the enantioselective synthesis of $syn-\beta$ -alkoxyallylsilanes 11.

We report herein the synthesis and allylborations of the chiral (Z)- γ -silylallylboronates 14 and 15, which undergo Lewis acid accelerated reactions with aldehydes at −78 °C and give the targeted $syn-\beta$ -hydroxyallylsilanes 11a with excellent enantioselectivity (typically >90% ee). This solution to the problem posed by the synthesis of 11a was stimulated by recent reports by Ishiyama²⁰ and Hall²¹ that use of catalytic amounts of Lewis acid greatly enhances the rates of reactions of allylboronates and aldehydes. Hall also demonstrated that under Lewis acid-promoted reaction conditions, crotylborations of aliphatic aldehydes using reagents incorporating Hoffmann's chiral auxiliary 16²² proceed with excellent enantioselectivity.²³

(Z)- γ -Silylallylboronates **14** and **15** seemed ideally suited for synthesis via Matteson's α-halomethylboronate alkylation chemistry.^{24,25} Thus, transesterification of the iodomethylboronic ester 17 with diol 16^{22,26} provided the chiral iodomethylboronic ester 18 (Figure 3). However, in spite of

Figure 3. Synthesis of (Z)- γ -silylallylborates 14, 15, and 26.

considerable experimentation, treatment of 18 with the cyanocuprate 19a (which we previously employed in the synthesis of $8)^9$ or with the (Z)-silylvinyllithium 21 (generated by treatment of vinvlstannane 20²⁷ with BuLi in THF at -78 °C) did not provide the targeted silvlallylboronates 14 or 15; only vinylsilane 22 resulting from protonation of 19a or 21 was obtained.

Successful syntheses of 14 and 15 were ultimately achieved by addition of chloromethyllithium²⁸ to vinylboronates 24 and 25.²⁹ The (Z)-silylvinylbororonates 24 and 25 were prepared in 69-71% yields by treatment of boronate

4316 Org. Lett., Vol. 9, No. 21, 2007

⁽⁸⁾ Tinsley, J. M.; Roush, W. R. J. Am. Chem. Soc. 2005, 127, 10818. (9) Tinsley, J. M.; Mertz, E.; Chong, P. Y.; Rarig, R.-A. F.; Roush, W. R. Org. Lett. 2005, 7, 4245.

⁽¹⁰⁾ Va, P.; Roush, W. R. J. Am. Chem. Soc. 2006, 128, 15960.

⁽¹¹⁾ Va, P.; Roush, W. R. Org. Lett. 2007, 9, 307.

⁽¹²⁾ Va, P.; Roush, W. R. Tetrahedron 2007, 63, 5768.

⁽¹³⁾ Micalizio, G. C.; Roush, W. R. *Org. Lett.* **2001**, *3*, 1949. (14) Shotwell, J. B.; Roush, W. R. *Org. Lett.* **2004**, *6*, 3865.

⁽¹⁵⁾ Lambert, W. T.; Roush, W. R. Org. Lett. 2005, 7, 5501.

⁽¹⁶⁾ Roush, W. R.; Grover, P. T. Tetrahedron 1992, 48, 1981.

⁽¹⁷⁾ Roush, W. R.; Pinchuk, A. N.; Micalizio, G. C. Tetrahedron Lett. 2000 41 9413

⁽¹⁸⁾ Roush, W. R.; Chong, P. Unpublished research.

⁽¹⁹⁾ Narla, G.; Brown, H. C. Tetrahedron Lett. 1997, 38, 219.

⁽²⁰⁾ Ishiyama, T.; Ahiko, T.-a.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 12414.

⁽²¹⁾ Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586.

⁽²²⁾ Herold, T.; Schrott, U.; Hoffman, R. W.; Schnelle, G.; Ladner, W.; Steinbach, K. Chem. Ber. 1981, 114, 359.

⁽²³⁾ Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 10160.

⁽²⁴⁾ Matteson, D. S. Chem. Rev. 1989, 89, 1535.

⁽²⁵⁾ Matteson, D. S. Tetrahedron 1998, 54, 10555.

⁽²⁶⁾ Diol 16 was synthesized by a four-step sequence recently developed by Hall: Lachance, H.; St-Onge, M.; Hall, D. G. J. Org. Chem. 2005, 70,

⁽²⁷⁾ Marakami, M.; Matsuda, T.; Itami, K.; Ashida, S.; Terayama, M. Synthesis 2004, 9, 1522.

⁽²⁸⁾ Sadhu, K. M.; Matteson, D. S. Organometallics 1985, 4, 1687.

23 with the vinyllithiums 21a or 21b (which were generated by treatment of vinylstannanes 20a and 20b, respectively, with *n*-BuLi in THF at -78 °C). Dropwise addition of 1.1 equiv of n-BuLi to a -78 °C mixture of 1.5 equiv of chloroiodomethane and the corresponding vinyl boronate ester (24 or 25) in THF provided the targeted (Z)- γ silylallylboronates 14 and 15 in 71-79% yield after chromatographic purification. Reagents 14 and 15 are stable to chromatography and could be stored at −20 °C for long periods of time without any apparent decomposition.³⁰ An analogous sequence was employed for the synthesis of the related pinanediol-derived (*Z*)- γ -silylallylboronate **26**.

Table 1. Optimization of Conditions for Allylboration Reactions of 14

$$\begin{array}{c} \text{Me} \\ \text{Ph} \\ \text{O} \\ \text{O} \\ \text{SiMe}_2 \text{Ph} \\ \textbf{14} \end{array} \qquad \begin{array}{c} \text{Ph}(\text{CH}_2)_2 \text{CHO} \\ \text{(1.1 equiv)} \\ \text{CH}_2 \text{CI}_2 \\ \text{Ph} \\ \text{27} \end{array} \qquad \begin{array}{c} \text{OH} \\ \text{Ph} \\ \text{Si(Me)}_2 \text{Ph} \\ \text{+} \\ \textbf{11c} \\ \text{Ph} \\ \textbf{27} \end{array}$$

entry	reaction conditions	$\operatorname{product}(\mathbf{s}) \ (\%)^a$
1	Sc(OTf) ₃ (10 mol %), 32 h, -78 °C	no reaction b
2	Sc(OTf) ₃ (10 mol %), 48 h, -50 °C	no reaction b
3	BF ₃ ·OEt ₂ (100 mol %), 14 h, -78 °C	27 (63%)
4	BF ₃ •OEt ₂ (100 mol %), 1 h, −78 °C	27 (20%) + 11c (30%)
5	BF ₃ ·OEt ₂ (10 mol %), 3 h, -78 °C	11c (85%)

^a Yield of isolated product(s). ^b Based on ¹H NMR analysis of the crude reaction mixture.

Table 1 summarizes the definition of conditions for the Lewis acid-promoted allylboration reactions of the (Z)- γ silylallylboronate 14. At the outset, we were concerned that the product allylsilane 11c might be unstable with respect to Lewis acid-promoted Peterson elimination under the reaction conditions,³¹ or that **11c** might react further with a second equivalent of aldehyde to give dihydropyran products.32,33 While the latter pathway was not observed, the Petersen elimination of 11c was a serious problem under certain conditions, especially when BF₃•OEt₂ was used to promote the allylboration reaction (Table 1). No reaction was observed when a mixture of 14 and hydrocinnamaldehyde (1.1 equiv) were treated with 10 mol % of Sc(OTf)₃ even up to -50 °C for extended time periods (entries 1 and 2). When the reaction was performed with stoichiometric BF₃• OEt₂ for 14 h, the only isolated product was diene 27 (63% yield, entry 3). However, at shorter reaction times (entry 4), and especially when 10 mol % of BF3. OEt2 was used as catalyst, the Petersen elimination pathway was suppressed

and the syn- β -hydroxyallylsilane **11c** was obtained in 85% yield (entry 5). Also noteworthy is that 11c was obtained with 95% ee as judged by Mosher esters analysis, 34 and the diastereomeric anti-β-hydroxyallylsilane was not detected $(\geq 98:2 \text{ dr}).$

Results of the BF₃•OEt₂-promoted allylborations of representative aldehydes are summarized in Figure 4. The

Figure 4. Enantio- and diastereosynthesis of $syn-\beta$ -hydroxyallylsilanes via BF₃·OEt₂^a catalyzed allylboration of aldehydes with (Z)γ-silvlallylboronates 14 and 15. Footnotes: (a) 10 mol % BF₃· OEt₂ was employed unless otherwise indicated; (b) determined by Mosher esters analysis; (c) 15% of **14** was also recovered; (d) 20 mol % of BF3•OEt2 was employed.

reactions with aliphatic aldehydes consistently provided the syn- β -hydroxyallylsilane products 11c, 11d, 11e, 11f, and 11h with 91–95% ee (Mosher ester analysis).³⁴ Similar results were obtained in the synthesis of 28 (92% ee) from the trimethylsilyl-substituted allylboronate 15. We previously had been able to achieve only 50-64% ee for the γ -silylallylboration of aldehydes by using reagent 8.9 The only outlier from the trend of superior enantioselectivity for the BF₃•OEt₂-promoted allylborations with **14** (and **15**) is the allylboration of benzaldehyde, which provided 11g with only 50% ee. All attempts to improve this result by variation of

Org. Lett., Vol. 9, No. 21, 2007 4317

Me₃Si

⁽²⁹⁾ While our work was in progress Hall reported the synthesis of a type (III) bis-metal allyl reagent by a similar homologation process: Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2007, 129, 3070.

^{(30) &}lt;sup>1</sup>H NMR analysis of samples of 14 and 15 stored at −20 °C for 8 weeks showed no signs of decomposition and/or olefin isomerization.

⁽³¹⁾ Peterson, D. J. J. Org. Chem. 1968, 33, 780.

⁽³²⁾ Roush, W. R.; Dilley, G. J. Synlett 2001, 955

⁽³³⁾ Huang, H.; Panek, J. S. J. Am. Chem. Soc. 2000, 122, 9836 and references cited therein.

⁽³⁴⁾ Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.

reaction conditions were unsuccessful. Hall has also found that aromatic aldehydes were poor substrates for the Lewis acid-promoted crotylboration reaction.²³

Surprisingly, however, attempts to use the pinanediol derived reagent **26** in Lewis acid-promoted allylboration reactions were completely unsuccessful, with no reaction being observed under a variety of conditions (Figure 5).

Me Me RCHO (1.1 equiv) OH SiMe₂Ph
$$R = Ph \text{ or } (CH_2)_2Ph$$

11c, $R = Ph(CH_2)_2$
11g, $R = Ph$

Figure 5. Attempted allylboration reactions with pinanediol derived reagent **26**. Footnote: (*a*) conditions employed in Table 1 failed to provide any of the allylboration product as judged by ¹H NMR analysis of the crude reaction mixtures.

Finally, double asymmetric γ -silylallylboration reactions of **29** and *ent*-**29** with **14** are summarized in Figure 6. These reactions were much slower than those summarized in Figure 4, and required 2 to 4 days with 30% BF₃•OEt₂ at -55 °C. That the diastereoselectivity of these two transformations was only 6–7:1, and given the very long reaction times, suggests that some racemization of **29** (or *ent*-**29**) may have occurred under the reaction conditions, thereby limiting the overall reaction diastereoselectivity.

In summary, we have developed a convenient method for synthesis of $syn-\beta$ -hydroxyallylsilanes of general structure

Figure 6. Double asymmetric *syn-\gamma*-silylallylboration reactions of **14**.

11 and 28 via the BF₃·OEt₂-promoted γ -silylallylborations of aliphatic aldehydes with reagents 14 and 15. Aliphatic aldehydes undergo the γ -silylallylboration reaction with 91–95% ee, whereas the selectivity with benzaldehyde is much lower (50% ee). Utilization of this technology in several ongoing synthesis projects will be reported in due course.

Acknowledgment. This work was supported by the National Institutes of Health (GM 38436).

Supporting Information Available: Experimental procedures and tabulated spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL7018746

4318 Org. Lett., Vol. 9, No. 21, 2007